
Exploring documentation of GNU Emacs and
Org-mode

What these projects are doing right

Bastien Guerry – https://bzg.fr

March, 28th 2019

https://bzg.fr


Emacs ancester: TECO (1962)

I TECO : Tape/text Editor and COrrector
I An editor and a language to write text editing macros
I The language was interpreted and imperative
I Bad reputation as a "write-only" language (APL, . . . )
I "TECO is not a text editor, it is a programming language"
I TINT: TINT Is Not TECO (very first recursive acronym)
I MUNG: MUNG Until No Good (cli for TECO)



Emacs (1976): Editing MACroS running on TECO

I RMS extends TECO: real-time full-screen mode, active keys
I First Emacs (1976) was written as a set of TECO macros
I Both an editor and an environment to run editing macros
I Modeless editing by default (vs Vi modal editing)
I Emacs code-base is using C and Emacs Lisp



Emacs initial screen



Emacs initial screen elements

I Link to a tutorial
I Link to a guided tour
I Link to the Emacs manual
I Link to ordering a manual
I Quick start: open a file/directory
I Quick help: recover a file

Anything missing?



(How to quit Emacs?)



(Not such a bad question after all)



Fundamental Emacs design elements

I menu-bar and tool-bar: make commands more accessible
I A buffer: the place to edit text
I A cursor: which state can give some information
I A modeline: a read-only place for quick info
I An echo area: a read/write place for quick interactions
I A fringe: where to display indicators
I A margin: for indicators (e.g. \ in the right margin)
I A header-line: for more modeline-like informations
I Transient regions: highlight selected text
I Scroll bars: visual clues on where you are
I Help text and tooltips: information on active text
I Text properties: for hints on syntax or actions
I Overlay properties: for more hints on actions



Beyond Emacs design elements

Emacs design extensible and configurable and place context at the
heart of every interaction.

I linum-mode: display line numbers
I hl-line-mode: highlight current line
I guide-key-mode: display available keybindings
I helm-mode & ido-mode: contextual minibuffers
I M-x doctor RET: when you’re really really lost



Example: Emacs scratch buffer



Example: guide-key-mode



Emacs documentation-related commands

I C-h a : search for symbol or command
I C-h g : open the HTML manual in a browser
I C-h t : open the Emacs tutorial
I C-h k : type a key and get the command
I C-h f : search for function or commands
I C-h v : search for variables or options
I C-h C-d : help for debugging Emacs
I . . .
I C-h C-h : display more help commands

There is a dedicated help-mode to display help information and
documentation-oriented commands like info and man.



Emacs documentation materials and tools

Documentation materials:

I The GNU Emacs manual and guided tour
I Many online tutorials and screencasts
I https://www.emacswiki.org
I https://www.reddit.com/r/emacs/

Documentation tools:

I GNU coding standards
I Recommandations on writing documentation
I M-x checkdoc RET: Emacs Lisp docstrings linter

https://www.emacswiki.org
https://www.reddit.com/r/emacs/


Emacs: really "self-documenting"?

"Is Emacs better at documenting itself than Google?"
Terminology is still a blocker for beginners:

I yank => copy
I kill => cut
I window => pane
I frame => window
I kill buffer => close buffer



What about Org-mode?



Eating our own dogfood

I Org-mode is both a text editing/publishing tool and a todo list
manager

I Org-mode is used to write documentation (and README.org
on Github)

I Org-mode is used to track and display bugs (M-x
debbugs-org RET)



worg/worg-todo.org



Org-mode and the Joel test

Do you use source control? Yes, Git
Can you make a build in one step? Yes
Do you fix bugs before writing new code? Generally
Do you have a spec? For elements
Do you use the best tools money can buy? Yes, Emacs
Do you have testers? Yes, users
Do you do hallway usability testing? Not enough
Do you have a bug database? NO (Well, yes.)

See The Joel Test: 12 Steps to Better Code

https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code/


Basic facts about org-mode development

I There are 22087 commits as of 2019-03-28
I We don’t have a roadmap (but good willing users)
I We don’t use Github (but code.orgmode.org)
I We don’t have a bug tracker (but a mailing list)
I We have a single mailing list for developers and users

Github made it easy to report issues and to start projects: it does
not mean this "default" widely used interface is not questionable.



Facts about org-mode and its documentation

I We have both a manual and a "compact" guide
I We have a book version of the manual for Org 7.0
I We started Worg, a git-based collaborative documentation
I The Org manual, guide and worg docs are .org files
I We taught users how to give useful feedback in the manual
I We promote the notion of "ECM" (complete minimal example)
I The mailing list is welcoming, a place to learn

For the Org 7.0 book, we received the help of a professional editor,
which taught us a lot.

https://orgmode.org/manual/Feedback.html


Worg: collaborative documentation



A mailing list as a bug tracker, are you insane?

I Bugs get a very large exposure
I It promotes a collective sense of responsability
I Each bug is discussed in a unique place (a thread)
I It is easy to refer to bugs with a simple URL
I Patches are all discussed on the list



Yes, we can do better

I Enhance documents about Org syntax and elements
I Fix obsolete resources on Worg
I Test Org-mode with beginners
I Test Org documentation with beginners
I Publish documentation for the Org stable and unstable
I . . .



Resources

I fr.wikipedia.org/wiki/TECO
I fr.wikipedia.org/wiki/Emacs
I Where does the name "Emacs" come from?
I Stack Overflow: Helping One Million Developers Exit Vim
I How do I undo the most recent commits in Git?
I How to effectively use the self-documenting system of Emacs?
I The Joel Test: 12 Steps to Better Code

The XKCD drawing is published here under the CC-by-nd 2.5
license.

https://fr.wikipedia.org/wiki/TECO
https://fr.wikipedia.org/wiki/Emacs
https://kb.iu.edu/d/abuc
https://stackoverflow.blog/2017/05/23/stack-overflow-helping-one-million-developers-exit-vim/
https://stackoverflow.com/questions/927358/how-do-i-undo-the-most-recent-commits-in-git
https://stackoverflow.com/questions/10912543/how-to-effectively-use-the-self-documenting-system-of-emacs
https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code/
https://xkcd.com/688/

